Micro Sensors presents our piezoresistive pressure sensors, specifically designed for enhanced compatibility with liquid fluids pressure measurement. These pressure sensors deliver a temperature-compensated, wide-range mV-output signal. With pressure ranges spanning from 70 to 1000 bar and from 1 to 1450 psi, our versatile piezoresistive pressure sensors can be customized to meet unique material requirements, constructions, pressure port specifications
The feature of higher sensitivity, smaller temperature error, and better long-term stability makes pressure sensing element reliable and stable. The gold-plated diaphragm of MPM280Au is designed for hydrogen measurement. MPM281Pro is a high-accuracy, medium-isolated for high-demand pressure measurement. Digital I²C output MPM288DI measures pressure in conditions with strict power consumption requirements.
Small size pressure sensors are ideal for applications with stringent dimensional requirements. The advantages of these pressure sensors include their small diameters and reduced heights, providing a compact size that saves space and meets the installation requirements of narrow spaces. MicroSensor pressure sensors boast diameters ranging from Φ12.6mm to Φ19mm and heights as low as 6.5mm. Our compact-size mini pressure sensors are perfect for measuring the pressure of media compatible with stainless steel and Viton, particularly in working environments with limited installation space.
MPM283II allows easy integration into tight spaces or small devices with a wide measuring range of up to 1000 bar. Φ15mm oil-filled MPM285 is compatible with many media.
Anti-corrosive pressure sensors are specifically designed for measuring pressure in corrosive liquids, fluids, and gases. Industries such as chemical processing, oil and gas, marine, and wastewater treatment often exposure to corrosive substances. Anti-corrosive pressure elements withstand a certain level of corrosive effects. With diaphragm materials such as Tantalum, Titanium, Hastelloy C, and stainless steel 316L, these sensors are well-suited for measuring pressure in challenging environments like seawater or corrosive media, including acid etching, stress corrosion, alkalis, chlorides, chlorine compounds, nitric acid, and sulfuric acid, among others.
Differential pressure elements typically consist of two pressure ports and two sensing elements that measure the pressure difference between the two ports. They are available in various configurations and are compatible with different media types, making them versatile for a broad range of applications. The differential pressure sensor ranges from 350 mbar to 35 bar. Featuring optional external resistors for temperature compensation and an all-welded structure, it is suitable for various fluid media. These differential pressure sensors are widely used in industrial process control and other related fields for accurate differential pressure measurement.
The elements or instruments measure the liquids or gas pressure. Pressure sensors convert the actual pressure into electronic signals that can be easily read. In addition to directly measuring pressure, these sensors can also infer other metrics such as the flow of fluids/gases, velocity, water levels, and even altitude. Known by a variety of names - including pressure transducers, pressure transmitters, pressure senders, pressure indicators, pressure gauges, and manometers - these versatile devices are integral to numerous sectors, from aerospace and healthcare to the petrochemical industry.
The development of MEMS chips largely determines the pressure sensor development. It is essentially semiconductor sensors. C.S. Smith discovered the piezoresistive effect of silicon and germanium in 1954. This effect meant that when an external force is applied to a semiconductor material, its resistance would change significantly. Based on this principle, a strain resistor was glued to a metal film to convert the force signal into an electrical signal, thus enabling pressure measurement.
This marked the birth of piezoresistive pressure sensors. Subsequently, along with the silicon diffusion technology, each anisotropic corrosion technology and after the 80's micro-processing technology, gradually bring the pressure sensor to the micron level and the large volume development stage.
The pressure sensor works by converting the applied pressure into electrical signals. And they measure and interpret electrical signals through control system and user interface. There are many types of pressure sensors, while most of them have the following working principles.
• Piezoresistive: This type uses diaphragm (usually made of silicon or a metal),which leads to deformation in case of applied certain pressure. The resistance embedded strain gauges or piezoresistors have been changed due to the deformation. Then, it is converted into an electrical signal proportional to the applied pressure.
• Piezoelectric: Piezoelectric materials (such as quartz) are used among piezoelectric pressure sensors, which generates an electric charge when applied to pressure. The generated charge is proportional to the applied pressure. Meanwhile, it can be measured as an electrical signal.
• Capacitive: Capacitive pressure sensors have a diaphragm between two conductive plates. Once applied certain pressure, the shape of diaphragm and the distance between the plates will be changed, subsequently altering the capacitance. Meanwhile, changes in capacitance are measured and converted into an electrical signal.
There are just a few types of pressure sensor. Different types of pressure sensors have different advantages and disadvantages. The performance of pressure sensor depend on specific applications, required accuracy, sensitivity and environment conditions. However, it is worth mentioning that different types of pressure sensors have the same basic woring principle and function. This means pressure sensors convert the applied pressure into electrical signals for measurement and analysis.
• Piezoresistive Effect:
Piezoresistive pressure sensors operate based on the piezoresistive effect. When pressure is applied to the diaphragm, it deforms, causing mechanical strain in the piezoresistive elements. The strain leads to a change in the resistance of the piezoresistive elements. This change in resistance is proportional to the applied pressure.
• Wheatstone Bridge Configuration:
Wheatstone bridge circuit measures the change in resistance. The Wheatstone bridge consists of four resistors, with the piezoresistive elements acting as two of the resistors. When pressure is applied, the resistance change in the piezoresistive elements unbalances the bridge circuit, inducing a voltage output proportional to the pressure.
• Signal Processing:
The output voltage from the Wheatstone bridge is then processed by signal conditioning circuits. The amplified and converted signal can be displayed as pressure readings on a display or transmitted to a control system for further action.
Pressure sensors play a crucial role in oil and gas applications, encompassing a wide range of pressure types during the measurement process, including gauge, absolute, differential, high pressure, and micro differential pressure, among others. Our engineers possess extensive experience in this sector and possess a deep understanding of the challenges and intricacies involved in oil and gas processes. By applying our cutting-edge technology, we provide pressure measurement solutions for our customers to ensure process and product safety in the oil and gas industry.
• Pressure Sensors Applied in Food
The containment risk and cleanness difficulties are widely regarded as a matter of significant public concern during food and beverage processing. The vital is each cans, bottles, bags, or boxes leaving the factory are of the highest quality and health, and follow strict regulatory criteria. The reputation and profit of the company rely on these criteria.
It is necessary to establish complete control and procedure for smooth and efficient operation. Precision and reliable pressure sensors play vital role in process optimization. Whether measuring level of the fermentation tank or discharge pressure, advanced pressure sensors contribute to the security of food and beverages.
• Pressure Sensors in Industrial Automation
Pressure sensors in industrial automation work by measuring pressure, transmitting the measured signals to control systems, facilitating safety monitoring, and process optimization within pneumatic and hydraulic systems.
Micro Sensor tailored monitoring solutions aiming to maximize energy efficiency and improve product quality of our customers. In addition, the inner professional R&D team is committed to provide specialized pressure sensors to meet different demands. If you have any questions or suggestions, please feel free to leave a message. Micro Sensor’s sales engineers will respond within 24 hours, ensuring timely and personalized help.
The main production processes of a pressure sensor is gluing, binding, diaphragm welding, oil filling, sealing, pressure impact, aging, temperature compensation, resistance adjustment and inspection.
The quality of sensors is not only influenced by its properties, but also by its production process. The R&D and manufacturing of industrial pressure sensors and transmitters of Micro Sensor is original from the 1970s, with our production line showing the development of china’s sensor technology. Over the years, the production line has been expanded and upgraded several times, representing the great progress of the industry.
At present, Micro Sensor have its own advanced manufacturing site, realizing digitization, automation, and flexibility and manufacturing series star products including MPM280, MPM281, and MPM283, which conforms to the highest quality criteria to meet the clients’ satisfaction.
• Higher Sensitivity
Sensitivity can express the degree of amplification of the input signal by the sensor in practical applications. The piezoresistive pressure sensor can be more sensitive and accurate when detecting small changes in pressure. MicroSensor's higher sensitivity pressure sensor provides more reliable and stable measurement.
• Smaller Temperature Error
Silicon piezoresistive pressure sensors are temperature sensitive. At present, Micro Sensor's silicon piezoresistive sensors have fully adopted laser trimming technology and related algorithms. A dedicated processing chip or application circuit performs temperature compensation under software operation. This allows silicon piezoresistive sensors to achieve smaller temperature errors and better stability.
• Better Long-Term Stability
The main factors affecting long-term stability are its own structure, manufacturing process and environmental adaptability. Micro Sensor's sensors undergo pressure and fatigue tests in strict accordance with process requirements during the production process. The output values of the tested sensors are essentially unaffected even by changes in external temperature and pressure.
• Customized Configuration Options
MicroSensor offers customization options about pressure type, measurement range, materials, diameter size, etc. Customized pressure elements allow customers to tailor specifications to suit specific application requirements.
Industry BackgroundShipping is the primary mode of global trade, accounting for over 80% of the world's trade volume, with approximately 95% of China's international trade goods being transported by shipping. As international trade con...
From September 11th to 13th, Micro Sensor presented its sensing and measuring products and solutions at the Sensor China Expo & Conference 2024. Micro Sensor gave a keynote speech at the conference's opening roundtable forum. In additi...
As the water, wastewater, and environmental monitoring sectors evolve, staying on the cutting edge of technology is essential. WWEM focuses on organizes events, conferences, and exhibitions to promote the sharing of knowledge, technolo...
Micro Sensor, a leader in industrial measuring instrument solutions, is excited to announce its participation in the upcoming WEFTEC 2024 Exhibition, set to take place in New Orleans from October 2-4, 2024. This annual event, recognize...
WETEX focuses on sustainability and innovation in water, energy, and environmental technologies. Micro Sensor's commitment to sustainability, efficiency, and environmental stewardship will be at the forefront of its booth. WETEX 2024 w...
Pumps are vital equipment in industries and are used in various applications across different sectors such as water treatment plants, oil and gas industry, chemical processing, power generation, manufacturing, agriculture for irrigatio...